A Tundra orbit () is a highly elliptical geosynchronous orbit with a high inclination (approximately 63.4°), an orbital period of one sidereal day, and a typical eccentricity between 0.2 and 0.3. A satellite placed in this orbit spends most of its time over a chosen area of the Earth, a phenomenon known as Apsis, which makes them particularly well suited for communications satellites serving high-latitude regions.
The Tundra orbit, like the Molniya orbit, was developed by Soviet scientists. The Molniya orbit was specifically designed in the 1960s to provide better communication coverage for high-latitude regions, which geostationary satellites struggled to cover effectively. The Tundra orbit, while similar in its high inclination and elliptical shape, was developed later to offer continuous coverage over specific areas by having satellites spend most of their time over a chosen region. Both orbits were innovative solutions to the unique challenges posed by the Soviet Union's geographical location and the need for reliable communication and surveillance capabilities.
The ground track of a satellite in a Tundra orbit is a closed figure 8 with a smaller loop over either the northern or southern hemisphere.
Highly elliptical orbits provide an alternative to geostationary ones, as they remain over their desired high-latitude regions for long periods of time at the apogee. Their convenience is mitigated by cost, however: two satellites are required to provide continuous coverage from a Tundra orbit (three from a Molniya orbit).
A ground station receiving data from a satellite constellation in a highly elliptical orbit must periodically switch between satellites and deal with varying signal strengths, latency and as the satellite's range changes throughout its orbit. These changes are less pronounced for satellites in a Tundra orbit, given their increased distance from the surface, making tracking and communication more efficient. Additionally, unlike the Molniya orbit, a satellite in a Tundra orbit avoids passing through the Van Allen belts.
Despite these advantages the Tundra orbit is used less often than a Molniya orbit in part due to the higher launch energy required.
where is the orbital inclination, is the eccentricity, is mean motion in degrees per day, is the perturbing factor, is the radius of the Earth, is the semimajor axis, and is in degrees per day.
To avoid this expenditure of fuel, the Tundra orbit uses an inclination of 63.4°, for which the factor is zero, so that there is no change in the position of perigee over time.
From 2000 to 2016, Sirius Satellite Radio, now part of Sirius XM Holdings, operated a constellation of three satellites in Tundra orbits for satellite radio. The RAAN and mean anomaly of each satellite were offset by 120° so that when one satellite moved out of position, another had passed perigee and was ready to take over. The constellation was developed to better reach consumers in far northern latitudes, reduce the impact of urban canyons and required only 130 repeaters compared to 800 for a geostationary system. After Sirius' merger with XM it changed the design and orbit of the FM-6 replacement satellite from a tundra to a geostationary one. This supplemented the already geostationary FM-5 (launched 2009), and in 2016 Sirius discontinued broadcasting from tundra orbits. The Sirius satellites were the only commercial satellites to use a Tundra orbit.
The Japanese Quasi-Zenith Satellite System uses a geosynchronous orbit similar to a Tundra orbit, but with an inclination of only 43°. It includes four satellites following the same ground track. It was tested from 2010 and became fully operational in November 2018.
Proposed uses
Properties
Orbital inclination
Argument of perigee
Period
Eccentricity
Semi-major axis
Spacecraft using Tundra orbits
Proposed systems
See also
|
|